NRL Memorandum Report 4702
December 8, 1981

A-7E SOFTWARE MODULE GUIDE

by
Kathryn Heninger Britton
and

David Lorge Parnas

Revisions
by
Paul C. Clements
LisaA. Kurowski

I. INTRODUCTION

PURPOSE

The A-7E Module Guide describes the module structure of the A-7E flight software produced by the
Naval Research Laboratory. It provides an orientation for software engineers who are new to the A-7E
system, explains the principles used to design the structure, and shows how responsibilities are allocated
among the major modules.

This guide isintended to lead a reader to the module that deals with a particular aspect of the system.
It states the criteria used to assign a particular responsibility to a module and arranges the modules in such
a way that a reader can find the information relevant to his purpose without searching through unrelated
documentation.

The module guide should be read before any other internal design documentation for the NRL A-7E
software, because the guide defines the scope and contents of the individual design documents.

This guide describes and prescribes the module structure. Changes in the structure will be promul-
gated as changes to this document. Changes are not official until they appear in that form. Thisguideisa
rationalization of the structure, not a description of the design processthat led to it.

PREREQUISITE KNOWLEDGE

Readers are assumed to be familiar with the terminology and organization of [1], which will be
referred to as ‘*the requirements document’’. They should have a general idea of the functions performed
by the A-7E flight software, and be familiar with the types of hardware devices that are connected to such
computers. These are described in the requirements document.

ORGANIZATION

Section |1 gives the background for the design. It states 1) the goals that motivated the module
design decisions presented in this document; 2) the basic principles on which the design is based; and 3)
the relationship between the module structure and two other structures of the NRL A-7E software.

Section 111, the main body of the document, presents a hierarchical decomposition of the software
into top-level, second-level, and third-level modules. The modules at each level are components of
modules of the next higher level.

Terms, such as ‘*‘module’’, that are used with a special meaning in NRL’s A-7E design, are defined
in the glossary. Readers who are not familiar with the NRL A-7E project’s terminology should study the
glossary before reading further. An overview of the methodology isalso givenin [15, 16].

[I. BACKGROUND

THE A-7E SOFTWARE STRUCTURES

A structural description of a software system shows the program’s decomposition into parts and the
relations between those parts. A-7E programmers must be concerned with three structures: (1) the module
structure, (2) the uses structure, and (3) the process structure. This section contrasts these structures.

(1) Each module consists of a group of closely related programs. The module structure is the
decomposition of the program into modules and the assumptions that the team responsible for
each moduleis allowed to make about the other modules.

(2) Inthe uses structur e the components are programs, i.e., not modules but parts of modules; the
relation is *‘reguires the correct presence of’’. The uses structure determines the executable
subsets of the software [7]. Guidelines for the design of the A-7E uses structure are given in

(7.

(3) The process structure is a decomposition of the run-time activities of the system into units
known as processes. Processes are not programs; there is no simple relation between modules
and processes. The implementation of some modules may include one or more processes, and
any process may invoke programsin several modules.

The rest of this document describes the modul e structure.

GOALSOF THE A-7TE MODULE STRUCTURE

The overall goa of the decomposition into modules is reduction of software cost by alowing
modules to be designed, implemented, and revised independently. Specific goals of the module decompo-
sition are:

(1) each modul€'s structure should be simple enough that it can be understood fully;

(2) it should be possible to change the implementation of one module without knowledge of the
implementation of other modules and without affecting the behavior of other modules;

(3) the ease of making a change in the design should bear a reasonable relationship to the likeli-
hood of the change being needed; it should be possible to make likely changes without chang-
ing any module interfaces; less likely changes may involve interface changes, but only for
modules that are small and not widely used. Only very unlikely changes should require
changes in the interfaces of widely used modules. There should be few widely used interfaces;

(4) it should be possible to make a major software change as a set of independent changes to indi-
vidual modules, i.e., except for interface changes, programmers changing the individual
modules should not need to communicate. If the interfaces of the modules are not revised, it
should be possible to run and test any combination of old and new module versions.

As a conseguence of the goals above, the A-7E software is composed of many small modules. They
have been organized into a tree-structured hierarchy; each nonterminal node in the tree represents a module
that is composed of the modules represented by its descendents. The hierarchy is intended to achieve the
following additional goals:

(5) A software engineer should be able to understand the responsibility of a module without
understanding the modul€’ sinternal design.

1-2

(6) A reader with a well defined concern should easily be able to identify the relevant modules
without studying irrelevant modules. This implies that the reader be able to distinguish
relevant modules from irrelevant modules without looking at their internal structure.

DESIGN PRINCIPLE

The A-7E module structure is based on the decomposition criteria known as information hiding [2].
According to this principle, system details that are likely to change independently should be the secrets of
separate modules; the only assumptions that should appear in the interfaces between modules are those that
are considered unlikely to change. Every data structure is private to one module; it may be directly
accessed by one or more programs within the module but not by programs outside the module. Any other
program that requires information stored in a modul€’'s data structures must obtain it by calling module
programs.

Applying this principle is not always easy. It isan attempt to minimize the expected cost of software
and requires that the designer estimate the likelihood of changes. Such estimates are based on past experi-
ence, and may require knowledge of the application area, as well as an understanding of hardware and
software technology.

In a few cases information that is likely to change must be communicated between modules. To
reduce the cost of software changes, use of some modules or portions of a module interface, may be res-
tricted. Restricted interfaces are indicated by **(R)’’ in the documentation. Often the existence of certain
smaller modules is itself a secret of alarger module. In afew cases, we have mentioned such modulesin
this document in order to clarify where certain functions are performed. Those modules are referred to as
hidden modules and indicated by ‘*(H)'’ in the documentation.

MODULE DESCRIPTION

Three ways to describe a module structure based on information-hiding are: (1) by the roles played
by the individual modules in the overall system operation; (2) by the secr ets associated with each module;
and (3) by the facilities provided by each module. This document describes the module structure by
characterizing each module’s secrets. Where useful, we also include a brief description of the role of the
module. The description of facilitiesis relegated to the module specifications (e.g. [3,4,5,6,9,10,12,13,14]).

For some modules we find it useful to distinguish between a primary secret, which is hidden infor-
mation that was specified to the software designer, and a secondary secr et, which refers to implementation
decisions made by the designer when implementing the module designed to hide the primary secret.

Although we have attempted to make the decomposition rules as precise as possible, the possibility
of future changes in technology makes some of the boundaries fuzzy. Some sections point out fuzzy areas
and discuss additional information that must be used to resolve ambiguities.

MODULE INITIALIZATION

Every module in the A-7E software can contain variables that must be given initial values when the
computer is turned on. Each module contains a program for initialization that will be called when power
up occurs. There will be a main initialization program that is invoked at power up. It will invoke the ini-
tialization programs for selected second-level modules. The initiaization program for a module will call
the initialization programs for each of its submodules. These programs will be executed, sequentialy,
before any of the parallel processes begin to execute.

The initialization program for a module at a leaf of the module tree is part of that module. The ini-
tialization program for a higher-level module M is contained in a submodule of M, called the I nitialization
Module of M. These initialization modules will not be described further in this document. The initializa-
tion program for the system is contained in the module defined in Section C:3.5.1 of this document.

TREATMENT OF UNDESIRED EVENTS

Development versions of all modules will check for and report undesired events (UEs). Each
module interface description contains a list of possible UEs. It should include hardware errors, software
errors and errors caused by the using program. During development, the implementation of a module will

1-3

check for the specified UEs. The user of a module may supply a program to be invoked when the UE is
detected. However, much of the UE detection and correction must be removed from the production version
of the system because of space limitations.

The remainder of this report provides a top-down overview of the module structure.

1-4

1. A-7E MODULE STRUCTURE

A: TOP-LEVEL DECOMPOSITION

The software system consists of the three modules described below.

A:1 HARDWARE-HIDING MODULE

The Hardware-Hiding Module includes the programs that need to be changed if any part of the
hardware is replaced by a new unit with a different hardware/software interface but with the same general
capabilities. This module implements ‘*virtual hardware’’ or an abstract device that is used by the rest of
the software. The primary secrets of this module are the hardware/software interfaces described in
chapters 1 and 2 of the requirements document. The secondary secrets of this module are the data struc-
tures and algorithms used to implement the virtual hardware.

A:2 BEHAVIOR-HIDING MODULE

The Behavior-Hiding Module includes programs that need to be changed if there are changes in the
sections of the requirements document that describe the required behavior (chapters 3 and 4). The content
of those sections is the primary secret of this module. These programs determine the values to be sent to
the virtual output devices provided by the Hardware-Hiding Module.

A:3 SOFTWARE DECISION MODULE

The Software Decision Module hides software design decisions that are based upon mathematical
theorems, physical facts, and programming considerations such as algorithmic efficiency and accuracy.
The secrets of this module are not described in the requirements document. This module differs from the
other modules in that both the secrets and the interfaces are determined by software designers. Changesin
these modules are more likely to be motivated by a desire to improve performance than by externaly
imposed changes.

1-5

Notes on the top-level decomposition:

Fuzziness in the above classifications is unavoidable for the following reasons:

@)

2

©)

(4)

The line between requirements definition and software design has been determined in part by
decisions made when the requirements documents are written; for example, weapon trajectory
models may be chosen by system analysts and specified in the requirements document, or they
may be |eft to the discretion of the software designers.

The line between hardware characteristics and software design may vary. Hardware can be
built to perform some of the services currently performed by the software; consequently, cer-
tain modules can be viewed either as modules that hide hardware characteristics or as modules
that hide software design decisions.

Changes in the hardware or in the behavior of the system or its users may make a software
design decision less appropriate.

All software modules include software design decisions; changes in any module may be
motivated by efficiency or accuracy considerations.

To reduce the fuzziness, we have based our decomposition on the current requirements document. In

particular,

D)

@

3

(4)

The line between requirements and software design is defined by our requirements document.
When the requirements document specifies an algorithm, we do not consider the design of the
algorithm to be a software design decision. If the requirements document only states require-
ments that the algorithm must meet, we consider the program that implements that algorithm to
be part of a Software Decision Module.

The line between hardware characteristics and software design is based on estimates of the
likelihood of future changes. For example, if it is reasonably likely that future hardware will
implement a particular facility, the software module that implements that facility is classified
as a hardware-hiding module; otherwise, the module is considered a software design module.
In most cases we have taken a conservative stance; the design is based on the assumption that
drastic changes are less likely than evolutionary changes.

A module is included in the Software Decision Module only if it would remain correct, albeit
less efficient, when there are changes in the requirements document.

A module will be included in the Software Decision Module only if its secrets do not include
information documented in the software requirements document.

1-6

B: SECOND-LEVEL DECOMPOSITION

B:1 HARDWARE-HIDING MODULE DECOMPOSITION:

The Hardware-Hiding Module comprises two modules.

B:1.1 EXTENDED COMPUTER MODULE

The Extended Computer Module hides those characteristics of the hardware/software interface of the
avionics computer that we consider likely to change if the computer is modified or replaced.

Avionics computers differ greatly in their hardware/software interfaces and in the capabilities that
are implemented directly in the hardware. Some avionics computers include a hardware approximation of
real numbers, while others perform approximate real number operations by a programmed sequence of
fixed-point operations. Some avionics systems include a single processor; some systems provide severa
processors. The Extended Computer provides an instruction set that can be implemented efficiently on
most avionics computers. This instruction set includes the operations on application-independent data
types, sequence control operations, and general I/O operations. The Extended Computer is a multi-
processor but may also serve as a single processor.

The primary secrets of the Extended Computer are: the number of processors, the instruction set of
the computer, the processor state transitions, the processor addressing restrictions, and the processor’s
self-test capabilities.

The structure of the Extended Computer Module is given in section C:1.1. Specifications for
Extended Computer submodules are givenin [4].

B:1.2 DEVICE INTERFACE MODULE

The Device Interface Module hides the peripheral device characteristics that are considered likely to
change. Each device might be replaced by an improved device capable of accomplishing the same tasks.
Replacement devices differ widely in their hardware/software interfaces. For example, al angle-of-attack
sensors measure angle-of-attack, but they differ in input format, timing, and the amount of noise in the
data

The Device Interface Module provides virtua devices to be used by the rest of the software. The
virtual devices do not necessarily correspond one to one to physical devices because al of the hardware
providing a capability is not necessarily in one physical unit. Further, there are some capabilities of a phy-
sical unit that are likely to change independently of others; it is advantageous to hide characteristics that
may change independently in different modules.

The primary secrets of the Device Interface Module are those characteristics of the present devices
documented in the requirements document and not likely to be be shared by replacement devices.

The structure of the Device Interface Module is given in section C:1.2. Specifications for Device
Interface submodules are given in [3].

Notes on the Har dwar e-Hiding M odule Decomposition

Our distinction between computer and device is based on the current hardware and is the one made
in the requirements document. Information that applies to more than one device is considered a secret of
the Extended Computer; information that is only relevant to one device is a secret of a Device Interface
Module. For example, there is an analog to digital converter that is used for communicating with several
devices; it is hidden by the Extended Computer although it could be viewed as an external device. As
another example, there are special outputs for testing the I/O channels; they are not associated with asingle
device. These too are hidden by the Extended Compulter.

If al the hardware were replaced simultaneously, there might be a significant shift in responsibilities
between computer and devices. In systems like the A-7E such changes are unusual; the replacement of
individual devices or the replacement of the computer alone is more likely. Our design is based on the
expectation that this pattern of replacement will continue to hold.

1-7

B:2 BEHAVIOR-HIDING MODULE DECOMPOSITION:

The Behavior-Hiding Module consists of two modules: a Function Driver (FD) Module supported by
a Shared Services (SS) Module.

B:2.1 FUNCTION DRIVER MODULE

The Function Driver Module consists of a set of modules called Function Drivers; each Function
Driver is the sole controller of a set of closely related outputs. The outputs are either part of a virtual dev-
ice or provided by the Extended Computer for test purposes. The primary secrets of the Function Driver
Module are the rules determining the values of these outputs.

The structure of the Function Driver Module is given in section C:2.1. Specifications for the Func-
tion Driver Module are found in [8].

B:2.2 SHARED SERVICESMODULE

Because al the Function Drivers control systems in the same aircraft, some aspects of the behavior
are common to several Function Drivers. We expect that if there is a change in that aspect of the behavior,
it will affect al of the functions that share it. Consequently we have identified a set of modules, each of
which hides an aspect of the behavior that applies to two or more of the outputs.

The structure of the Shared Services Module is found in section C:2.2. Specifications for the Shared
Services Module are found in [9].

Notes on the Behavior-Hiding M odule structure

Because users of the documentation cannot be expected to know which aspects of a function’s
behavior are shared, the documentation for the Function Driver Modules will include a reference to the
Shared Services Modules that it uses. A maintenance programmer should always begin hisinquiry with the
appropriate function driver. He will be directed to the Shared Services Modules when appropriate.

B:3 SOFTWARE DECISION MODULE DECOMPOSITION:

The Software Decision Module has been divided into (1) the Application Data Type Module, which
hides the implementation of certain variables, (2) the Physica Models Module, which hides algorithms that
simulate physical phenomena, (3) the Data Banker Module, which hides the data-updating policies, (4) the
System Generation Module, which hides decisions that are postponed until system generation time, (5) the
Software Utility Module, which hides algorithms that are used in several other modules.

B:3.1 APPLICATION DATA TYPE MODULE

The Application Data Type Module supplements the data types provided by the Extended Computer
Module with data types that are useful for avionics applications and do not require a computer dependent
implementation. These data types are implemented using the data types provided by the Extended Com-
puter; variables of those types are used just asif the types were built into the Extended Computer.

The secrets of the Application Data Type Module are the data representation used in the variables
and the programs used to implement operations on those variables. Units of measurements are part of the
representation and are hidden. Where necessary, the modules provide conversion operators, which deliver
or accept real valuesin specified units.

The structure of the Application Data Type Module is given in section C:3.1. Specifications for
these modules may be found in [5].
B:3.2 DATA BANKER MODULE

Most data are produced by one module and consumed by another. In most cases, the consumers
should receive a value as up-to-date as practical. The time at which a datum should be recalculated is

1-8

determined both by properties of its consumer (e.g., accuracy requirements) and by properties of its pro-
ducer (e.g., cost of calculation, rate of change of value). The Data Banker Module acts as a‘* middleman’’
and determines when new values for these data are computed. The Data Banker obtains values from pro-
ducer programs; consumer programs obtain data from Data Banker access programs. The producer and
consumers of a particular datum can be written without knowing whether or not the Data Banker stores the
value or when a stored value is updated. In most cases, neither the producer nor the consumer need be
modified if the updating policy changes.

The Data Banker provides values for all data that report on the internal state of a module or on the
state of the aircraft. The Data Banker also reports events involving changes in the values that it supplies.
The Data Banker is used as long as consumer and producer are separate modules, even when they are both
submodules of alarger module. The Data Banker is not used if consumers require specific members of the
sequence of values computed by the producer, or if a produced value is solely a function of the values of
input parameters given to the producing program.

The choice among updating policies should be based on the consumers' accuracy requirements, how
often consumers require the value, the maximum wait that consumers can accept, how rapidly the value
changes, and the cost of producing a new value. Thisinformation is part of the specification given to the
implementor of the Data Banker.

Specifications of the interface to the Data Banker Module can be found in [6].

B:3.3 FILTER BEHAVIOR MODULE

The Filter Behavior Module contains digital models of physical filters. They can be used by other
programs to filter potentialy noisy data. The primary secrets of this module are the models used for the
estimation of values based on sample values and error estimates. The secondary secrets are the computer
algorithms and data structures used to implement those models.

B:34 PHYSICAL MODELSMODULE

The software requires estimates of quantities that cannot be measured directly but can be computed
from observables using mathematical models. The primary secrets of the Physical Models Module are the
models; the secondary secrets are the computer implementations of those models.

The structure of the Physical Models Module is given in section C:3.2. Interface specifications are
foundin [12].

B:3.5 SOFTWARE UTILITY MODULE

The Software Utility Module contains those utility routines that would otherwise have to be written
by more than one other module. The routines include mathematical functions, resource monitors, and pro-
grams that signal when all modules have completed their power-up initializations.

Because users of the documentation cannot be expected to know which routines are used by more
than one module, the documentation of using modules will always contain references to the Software Util-
ity Module.

The secrets of the module are the data structures and algorithms used to implement the programs.

B:3.6 SYSTEM GENERATION MODULE

The primary secrets of the System Generation Module are decisions that are postponed until system-
generation time. These include the values of system generation parameters and the choice among alterna-
tive implementations of amodule. The secondary secrets of the System Generation Modul e are the method
used to generate a machine-executable form of the code and the representation of the postponed decisions.
The programs in this module do not run on the on-board computer; they run on the computer used to gen-
erate the code for the on-board system.

The structure of the System Generation Module is given in section C:3.4.

1-9

C: THIRD-LEVEL DECOMPOSITION

C:1 HARDWARE-HIDING MODULE

C:1.1 EXTENDED COMPUTER MODULE DECOMPOSITION

C:1.1.1 DATA MODULE

The Data Module implements variables and operators for real numbers, time intervals, and bit
strings. The data representations, data addressing, and data manipulation instructions built into the com-
puter hardware are the primary secrets of this module. Specifically, the primary secrets are the representa-
tion of numeric objects in terms of hardware data types; the representation of bitstrings; and how to access
a bit within a bitstring. The primary secrets also include the representation of times for hardware timers,
but the module is unconcerned with how the timers are started or how they measure elapsed real-time. The
secondary secrets of this module are how range and resolution requirements determine representation; the
procedures for performing numeric operations; the procedures used to perform bitstring operations; and
how to compute the memory location of an array element given the array name and the element index.

C:1.1.2 INPUT/OUTPUT MODULE

The Input/Output Module transmits bitstrings to and from peripheral devices without any interpreta-
tion of the values. It also contains diagnostic programs to test the I/O hardware. Specifically, the primary
secrets are hardware instruction sequences to perform /O operations; the assignment of information to
channels and /O words; how the success or failure of an 1/0O operation is determined; how the diagnostic
tests are performed; the criteria used to judge results; and the timing characteristics that affect test evalua-
tion. The secondary secrets of this module are the techniques used to prevent simultaneous use of
resources; when input operations actually take place; and the values written out for unused discrete output
word bits.

C:1.1.3 COMPUTER STATE MODULE
The Computer State Module keeps track of the current state of the Extended Computer, which can be

either *‘operating’’, ‘*off’’, or *‘failed’’, and signals relevant state changes to user programs. The primary
secret is the way that the hardware detects and signals state changes. Specifically, the primary secrets are
how the hardware behaves when the power is turned on; the effect that the GO/NO-GO timer has on the
state of the machine; how the hardware behaves when it enters malfunction states; how malfunctions in
hardware functions are detected and reported; how many actual states the hardware has, and what hardware
transitions are possible; what internal malfunctions cause transitions from *‘operating’’ to ‘‘failed’’; and
what causes transitions to ‘‘off’’ and to ‘‘operating’’. After the EC has been initialized, this module sig-

nals the event that starts the initialization for the rest of the software.

C:1.1.4 PARALLELISM CONTROL MODULE

The virtual computer provided by the Extended Computer Module executes a set of processes in
parallel. The Parallelism Control Module determines the rate of progress of processes subject to the con-
straints imposed by synchronization operations and by the timing parameters in the process definitions.
The synchronization operations, the scheduler, and diagnostic procedures for testing the interrupt hardware
are part of thismodule.

The number of processors, the mechanism for process switching, how the interrupt hardware is
tested, the criteria used to judge test results, and the timing characteristics that affect test evaluation are the
primary secrets of this module. The secondary secrets of this module are the data structures and operations
required to load a process on a processor; the data structures required to represent processes and keep track
of their current state; how the exclusion relation is implemented; the data structures and agorithms
required to keep track of semaphore values and of process states; and how synchronization operations are
made indivisible.

1-10

C:1.1.5 PROGRAM MODULE

The Program Module determines the order of statement execution within a process. It provides an
instruction that permits loops and conditional selection among alternative code sections; it also provides
subprogram invocation.

The primary secrets of this module are the sequence control mechanisms of the actual computer.
Specifically, they are the control structures that exist at the hardware level; the hardware instruction
sequences needed to implement the EC control structures; and how control gets transferred to the program
and later returned to the user program, including any subroutine linkage conventions such as saving and
restoring registers. The secondary secrets are how parameter information is communicated between the
invoked and invoking programs and how the order of execution is determined.

C:1.1.6 VIRTUAL MEMORY MODULE (H)

The Virtual Memory Module presents a uniformly addressable virtual memory to the other Extended
Computer submodules, allowing them to use virtual addresses for both data and subprograms. It provides
diagnostic facilities for testing the memory. The primary secrets of the Virtual Memory Module are the
hardware addresses for data and instructions; differences in the way that different areas of memory are
addressed are hidden; how the memory tests are performed; the criteria used to judge results; and the tim-
ing characteristics that affect test evaluation. The secondary secrets of the module are the policy for alo-
cating real memory to virtual addresses; the programs that translate from virtual address references to real
instruction sequences; which parts of memory are checked when a diagnostics program is run; and the
algorithm used to check that memory.

This module is invisible to Extended Computer users, except for a single program that allows a user
to request a memory test. The Extended Computer offersa‘‘typed’’ memory instead of a memory consist-
ing of general-purpose words.

C:1.1.7 INTERRUPT HANDLER MODULE (H)

The Interrupt Handler Module is responsible for responding to external interrupts and reporting
them; to other programs, an interrupt event looks like any other event signalled by the software. As a
result, other programmers are not aware of either interrupts or the Interrupt Handler Module.

The primary secrets of this Module are which devices must be polled and which execute interrupts,
the way that the hardware behaves when an interrupt occurs, the mapping between hardware interrupts and
events signalled by the software, and the method used to identify the source of the interrupt. The secon-
dary secret is the mechanism for trandating hardware interrupts into software events.

C:1.1.8 TIMER MODULE

The Timer Module is responsible for measuring elapsed real-time. Its primary secrets are the
hardware' s timer mechanisms and the number of actual hardware timing devices and their characteristics,
including range and resolution. Its secondary secrets are the data structures and methods used to keep track
of the intervals being measured; the data structures needed to keep track of all the active timers; the algo-
rithms needed to process al of them; and which hardware timing device is assigned to a timing task. The
actual data representation of times for hardware timersis not a part of this module.

1-11

C:1.2 DEVICE INTERFACE MODULE DECOMPOSITION

C:1.2.1 AIR DATA COMPUTER

The primary secrets of the Air Data Computer are how to obtain raw measurements for barometric
altitude, true airspeed, and Mach number; the scale, offset, and format of the input data items; the way in
which the built-in test operates and the method used to determine if the test was passed or failed; the
device-dependent operations that must be applied to the raw measurements from the device in order to pro-
duce correct barometric altitude, true airspeed, and Mach number and the relationship between the ADC
and the FLR.

C:1.2.2 ANGLE OF ATTACK SENSOR

The primary secrets of the Angle of Attack Sensor are the method used to read angle of attack; the
value encoding of the data words from the devices; the corrections that are applied by this module; and the
circumstances under which the AOA isunreliable.

C:1.2.3 AUDIBLE SIGNAL DEVICE

The primary secret of the Audible Signal Device is the value encoding of the data word to the device.
The secondary secret of this module is the method used to cause the signal to beep on and off.

C:1.24 COMPUTER FAIL DEVICE

The primary secrets of the Computer Fail Device are how to signal computer failure to the pilot and
other devices and the value encoding of the data words to those devices.

C:1.25 DOPPLER RADAR SET

The primary secrets of the Doppler Radar Set are the data representation within the 1/0 words (scale
and offset); the method used to determine if the ground speed and drift angle data words are reliable; the
arrival sequence of the data; and the operations that must be done on the raw measurements from the dev-
ice if the DRS has passed its built-in test, and what parts of that test operation are implemented in the
hardware. The Doppler Radar Set aso hides the causes of local mode transitions, transitions from one
configuration (defined by the scans and points of the radar and the display of information) to another,
which are not aresult of software action.

The secondary secret of this module isthe rate at which the device is sampled.

C:1.2.6 FLIGHT INFORMATION DISPLAYS

The primary secrets of the Flight Information Displays are how to display an azimuth and an eleva-
tion displacement, two points on a circle relative to a fixed reference point, and an unsigned decimal
number; the value encoding of the data to the devices; the maximum displayable values on the individual
displays,; and the actual limits of the ADI elevation and azimuth indicators are hidden until system genera-
tiontime.

C:1.2.7 FORWARD LOOKING RADAR

The primary secrets of the Forward Looking Radar Module are how to measure slant range distance
to a point on the ground; how to display a point on a radar screen; the scale, offset, and format of the FLR
I/O data words; the way in which the FLR is pointed at a target; whether there is a mechanically steered
antenna, or an electronically directed beam; the particular sequence of operations necessary to point the
FLR, the coordinate system transformation that must be done, and the antenna slave command; the way
that the software can detect that the pilot has set the FLR mode to Terrain Following; the particular items of
information required by the FLR during TF and how they are used; the relationship between the FLR and
other devices, such as the ADI and the ADC,; the details of the FLR built-in test and the method used to
determine if the hardware passes the test or not.

C:1.2.8 HEAD-UP DISPLAY

1-12

The primary secrets of the Head-Up Display Module are the particular sequence of operations neces-
sary to enable and position the various HUD symbols; the scale and offset of the data words for numeric
displays; the method used to generate the symboals, i.e. which symbols are hardware produced and which
are produced by software actions such as superimposing basic symbols; the reason for restrictions on cer-
tain symbols, such as why the RNGCUE and LSC are exclusive, why the PUC must flash when on, and
why the FPM cannot be turned on unless the vertical velocity and acceleration displays are enabled; and
which symbols have hardware controlled blinking.

The secondary secrets of this module are the method used to cause certain symbols to be removed
from the display and how the HUD test pattern is generated.

C:1.29 INERTIAL MEASUREMENT SET

The primary secrets of the Inertial Measurement Set are how to measure aircraft atitude, heading,
and velocity; how to adjust the orientation of the platform axes; the particular sequence of operations
necessary to provide torquing/slewing commands to the platform gyros (the users of the abstract interface
request a correction in terms of an angle of rotation about a particular axis. The abstract interface produces
the correct gyro torquing/slewing commands); the scale and offset of input and output data items; the for-
mat of the input and output data words; the particular corrections that are applied in computing the inter-
face output values; the algorithm that produces current platform velocities from the IMS incremental velo-
cities and an initia velocity; the fact that the IMS mode switch input is the same for **off’’ and **none’’;
the amount of time taken to perform fine rotations of the platform; how it is determined that the IMS is
ready for computer control; and the fact that this IMS is sensitive to the latitude of the aircraft.

C:1.2.10 INPUT-OUTPUT REPRESENTATION MODULE (H)

The Input-Output Representation Module provides a set of programs that convert common data types
to data representations used by more than one of the hardware devices. Its primary secrets are those
hardware numeric data representations common to more than one device.

C:1.2.11 MASTER FUNCTION SWITCH (H)

The Master Function Switch hides a suite of five switches and reports which is currently depressed.
Its primary secret is the encoding of the data and the hardware interconnections and exclusions among the
switches.

C:1.2.12 PANEL

The primary secrets of the Panel Module are the value encoding of the data from/to the panel
hardware and the operations required to generate the characters on the displays.

C:1.2.13 PROJECTED MAP DISPLAY SET

The primary secrets of the Projected Map Display Set (PMDS) are the actual layout of the maps on
the film cassettes, the number of different maps on one cassette, and the scales of the maps; and the opera-
tions necessary to cause the PMDS device to move and orient the maps. The secondary secrets of this
module are the conversions to map format from longitude and latitude and the way in which the map refer-
ence point is stored and used.

C:1.2.14 RADAR ALTIMETER

The primary secrets for the Radar Altimeter Module are how to read the altitude of the aircraft above
local ground or water level and the value encoding of the data words from the device. The secondary
secrets for the module are the corrections that are applied to the data by this module and how invalid datais
identified.

C:1.2.15 SHIPBOARD INERTIAL NAVIGATION SYSTEM

The primary secrets of the Shipboard Inertial Navigation System Module are how to read the posi-
tion, altitude and velocity of a nearby ship carrying SINS transmission equipment and the representation of
the SINS data within the 1/O words, including scale, offset, and label information. The secondary secrets
of this module are the method used to determine if SINS data in each category is valid and the maximum

1-13

age that the data may reach and still be considered valid.

C:1.2.16 SLEW CONTROL

The primary secrets of the Slew Control Module are how to read data from a device indicating a two
dimensional displacement from an origin; the value encoding of the data items used by these access func-
tions; and the fact that the slew control is not a*‘perfect’’ device - it does not return exactly zero when in
the center position.

C:1.2.17 SWITCH BANK

The primary secrets of the Switch Bank Module are how to read the positions of all switches that do
not affect other hardware devices; the value encoding of the data items used by these access functions; and
the maximum number of settings for the fly-to number selector (before program assembly time). The max-
imum number of switch positionsis known to the program at run time.

C:1.2.18 TACAN

The primary secrets of the TACAN Module are how to read bearing and slant range to a TACAN
station; the value encoding of the data from the TACAN system; and the conditions that determine whether
the TACAN data are valid.

C:1.2.19 VISUAL INDICATORS

The primary secrets of the Visual Indicators Module are how to cause visible indicators to be on,
blinking, or off, and the value encoding of the data words to the devices.

C:1.2.20 WAYPOINT INFORMATION SYSTEM

The primary secrets of the Waypoint Information System Module are how to read received data giv-
ing the positions of waypoints; the format of received data; and the details of the waypoint 1/0 device.

C:1.2.21 WEAPON CHARACTERISTICS

There are two primary secrets of the Weapon Characteristics Module. The first is the way that the
various weapon characteristics are obtained for use. For example, for some weapon types, they are held in
atable. For others, they are retrieved from modules. Secondly, for some weapon types, the setting of the
“retarded’” ASCU switch has an effect on the weapon characteristics. Which weapons it affects and the
particular characteristics it affects are secrets. The secondary secret of this module is the information and
the source of the information required to determine the identity of the weapon type on the currently active
weapon station(s).

C:1.2.22 WEAPON RELEASE SYSTEM

The primary secrets of the Weapon Release System are how to cause weapons to be prepared and
released; details of the ARP, ASCU, and pilot’s grip stick hardware, such as operations necessary to per-
form certain functions and the encoding of values; the maximum settings of the ARP interval and quantity
switch and the number of stations and weapon types are secrets at program design and write time (the
actual values are inserted during the program assembly); the way that the ready and active weapon stations
are identified; the station priority scheme.

C:1.2.23 WEIGHT ON GEAR

The primary secrets of the Weight On Gear Module are how to tell if the plane is resting on the land-
ing gear and the value encoding of the data from the device.

1-14

C:2 BEHAVIOR-HIDING MODULE

C:2.1 FUNCTION DRIVER MODULE DECOMPOSITION

The following table describes the Function Driver submodules and their secrets.

Section Function Driver

C:211 AIRDATA COMPUTER

C:21.2 AUDIBLE SIGNAL

C:21.3 COMPUTER FAIL SIGNAL
C:214 DOPPLARRADAR
C:215 FLIGHT INFORMATION DISPLAY

C:21.6 FORWARD LOOKING RADAR

C:21.7 HEAD-UPDISPLAY

C:21.8 INERTIAL MEASUREMENT SET

C:219 PANEL

C:21.10 PROJECTED MAPDISPLAY SET

C:2111 SINS

1-15

Secret
Where to obtain the barometric sea-level pres-
sure.
What new device has been installed and where.

When the audible signal should be on, off, or
beeping.

When to signal computer failure.
When to start and stop the Doppler Radar.

What information should be displayed and
when.
What the current FLR mode should be.

Where and when to position the cursors in the
FLR display.

Where to aim the FLR.

Where the movable HUD symbols should be
placed.

Whether a HUD symbol should be on, off, or
blinking.

What information should be displayed on the
fixed-position displays.

Rules determining the scale to be used for the
IMS velocity measurements.

When toinitialize the velocity measurements.
How much and when to rotate the IMS for aign-
ment.

What information should be displayed on panel
windows.

When the enter light should be turned on.

What geographical location should be displayed
on the map.

How the map should be oriented.

Where the map indicators should be positioned.

When to start and stop SINS reception.

C:2.1.12 VISUAL INDICATOR When the visual indicators should be on, off, or

blinking.
C:2.1.13 WEAPON RELEASE When to prepare and release a weapon.
C:2.1.14 GROUND TEST When and how to use the EC test outputs.

C:2.2 SHARED SERVICESMODULE DECOMPOSITION

The Shared Services Module comprises the following modul es.

C:2.21 MODE DETERMINATION MODULE

The Mode Determination Module determines the system modes (as defined in the requirements
document) and the local modes (aliases for system modes) as defined for the individual function driver
documents. It signals the occurrence of mode transitions and makes the identity of the current modes avail-
able. The primary secrets of the Mode Determination Module are the mode transition tables in the require-
ments document and the local mode definitions: what causes transitions among the Reguirements-defined
modes. The secondary secrets of this module are representation of the correspondence between defined
mode names and the defining modes; algorithm for signalling mode changes; and how the mode transition
criteriais represented.

C:2.2.2 PANEL I/O SUPPORT MODULE

The Panel 1/0 Support Module provides formatting services for the Function Drivers that display and
accept data through the panel. The primary secrets are the required data display and input formats. This
module will not be the one that hides the hardware/software interface of a particular panel; it will hide
characteristics of the virtual panel created by the Device Interface Module, providing a more convenient
interface. This module also signals events about panel operations. The secondary secret of this moduleis
how the interface of the DIM virtua panel is used to implement the services provided by the Input submo-
dule.

Specifically, the primary secrets of the submodules of the Panel 1/0 Support Module are:

PANEL CONFIGURATION
The data number associated with most of the display items.
Which configurations occur simultaneously.

The way the various panel switches affect the panel control configurations; which
configurations require keyboard input, and what input is required in such cases.

PANEL DISPLAY FORMAT
How the format lights are used to display certain data formats.

Certain format rules that govern how vaues are displayed, such as. how signs
(positive/negative) are displayed; how bitstrings and booleans are displayed; when decimal
points are used, and when they are merely implied.

PANEL INPUT
The sequence of operations necessary to perform panel input;

When and how each panel input operation is performed; how long ago each input operation
occurred.

How the pilot enters the identifying integer for multiple-value panel input items; whether he
employs the panel or some other means.

1-16

How to tell when a panel input operation has started and terminated.

The secondary secrets of this module include how this module makes use of other Panel 1/0 submodulesto
tell what value is being updated by any input operation.

C:2.2.3 SHARED SUBROUTINE MODULE

The Shared Subroutine Modules hide parts of the function definitions that are shared, perhaps with
some modification, by several functions. Where, in our judgment, the sharing is not a coincidence and a
change in one function driver is likely to be accompanied by a similar change in the others, the routines
have been included in the Shared Subroutine module to avoid duplication of code and documentation. In
some cases, we have made sharing possible by parameterization.

C:2.24 STAGE DIRECTOR MODULE

In some modes, the system sequences through stages; in each stage the program istrying to achieve a
goa and the end of each stage is marked by the achievement of that goal. Whether or not a goal has been
achieved is determined by the program itself, rather than by an external event. Although many of the
stages occur in several modes, the modes differ in the definition of the goals and the sequence of stages.

There are stage directors for each of the alignment modes and for the ground test mode. The primary
secret of each Stage Director Module is the sequence of stages and the predicates that determine when a
stage transition occurs. The behavior required in the individual stages is a secret of Function Driver sub-
modules, but the rules determining when to proceed from one stage to the next are hidden in the Stage
Director Module. Specifically, the primary secrets for the Stage Director Module are as follows:

The criteriafor determining the current alignment stage.
What causes one stage to end and another to begin.

The order of stagesin each of the alignment modes.
The criteria for determining the current test stage.

The order of test stages.

The secondary secrets of this module are how the stage transition criteria are represented and the algo-
rithms for detecting a transition.

C:2.25 SYSTEM VALUE MODULE

The System Value submodule computes a set of values. Although some values are used by more than
one Function Driver, the module may include a value that is only used in one Function Driver if the rule
used to calculate that value is the same as that used to calculate other shared values. The secrets of the Sys-
tem Value submodule are the rules in the requirements that define the values that it computes. The shared
rules in the requirements specify such things as 1) selection among several alternative sources, 2) applying
filters to values produced by other modules, or 3) imposing limits on a value calculated elsewhere. The
System Value submodule is also responsible for signalling events that are defined in terms of the values it
computes.

The individual submodules within the System Value Module are as follows:

DEVICE REASONABLENESS

Primary secrets of this module are the criteria to judge validity or reasonableness of sensor inputs
and when and how often the reasonabl eness tests are performed.

IMSALIGNMENT

Primary secrets of this module are when the navigation/alignment timer is started, stopped, and reset,
and when the alignment tests are performed, and the criteria defining success or failure of the test.

REFERENCE POINT

1-17

The primary secrets of the module are the definition of the HUD reference point, fly-to point, called-
up point, target, offset aim point, adjusted point, and fix point; what actions are taken to designate the refer-
ence points; what device determines the fix point and under what conditions; the latitude/longitude error
reference points; for ground and slant ranges, which of the available earth terrain models is used for the
calculations, how the value of the Mark number is determined; and where the destination and mark loca-
tions come from, when they are updated, and with what values.

SLEW

Primary secrets of the module include the rules for when slew operations may be performed; the
rules for determining the rates at which slewed symbols or devices move; how the program decides if the
current state is before slewing, after slewing, or during slewing; and what constitutes alegal slew input.

VALUE SELECTION

Value Selection’s primary secrets are which sensors provide the values produced; how the choice
among various sensors is made; how the choice between providing a sensor value or providing a null value
is made; and when various values are determined and/or updated.

WEAPON RELEASE

Primary secrets of the module are how the number of weapons in a stik is determined; how the
delivery spacing for a stik is determined; what classes of weapons cannot be delivered in a stik; what
configurations determine a high or low drag release condition; what weapon types are applicable to the
conditions; how to tell if the conditions for a successful weapon release exist; how to tell if atarget isin
range or not; how to tell what weapon delivery steering stage the system isin (if any); and how to deter-
mine the radius for blast avoidance.

C:3 SOFTWARE DECISION MODULE

C:3.1 APPLICATION DATA TYPE MODULE DECOMPOSITION

The Application Data Type Module is divided into two submodules.

C:3.1.1 NUMERIC DATA TYPE MODULE

The Numeric Data Type Module implements the following variables types. accelerations, accelera-
tion vectors, angles, angular rates, densities, displacements, distances, orientations, orientation rates, pres-
sures, speeds, and velocities. These modules may be used to implement types with restricted ranges or spe-
cial interpretations (e.g., angle is used to represent latitude). Primary secrets of the module are the
representation of numeric objects; how range and resolution information is used to determine representa-
tion; the procedures for performing numeric operations; and the conversions required if two objects of the
same type or type class are not represented in the same way.

C:3.1.2 STATETRANSITION EVENT DATA TYPE MODULE

This module allows programs to create and operate on data types described as finite state machines.
The domain of avariable is arelatively small set of states. A change in the value of a variable or a change
inits state is an event that can be signalled and awaited. State changes in such variables are reported to user
programs [11]. The modul€’s primary secrets are the agorithms used in the programs corresponding to
application data type attributes; the internal representation of states, sets, and relations; and how processes
await a state transition event and how they are restarted.

1-18

C:3.2 DATA BANKER MODULE
The Data Banker Module comprises the modules described below.

C:3.2.1 SINGULAR VALUESMODULE

This module consists of programs that return values and report events provided by a single producer
program. Its secrets are the update policies used for the values, and the detection mechanism used for the
events.
C:3.2.2 COMPLEX EVENT MODULE

This module consists of programs that report events that depend upon more than one produced value.
Its secret is how the Data Banker detects these events.

C:3.3 FILTER BEHAVIOR MODULE
No third level modules exist for this module.

C:34 PHYSICAL MODELSMODULE DECOMPOSITION

The Physical Models M odule comprises the modul es described below.

C:34.1 AIRCRAFT MOTION MODULE

The Aircraft Motion Module hides models of the aircraft’s motion which are used to calculate air-
craft position, velocity and attitude from observable inputs. Secrets of the module include the methods of
converting the aircraft’s potential energy to kinetic energy; the ratio(s) of thrust to drag when the aircraft is
accelerating with maximum indicated normal acceleration; and basic physics logic, such as the equations of
motion and accel eration and the geometry of torques and lever arms.

C:34.2 EARTH CHARACTERISTICSMODULE

The Earth Characteristics Module hides models of the earth and its atmosphere. This set of models
includes models of local gravity, curvature of the earth, air pressure, magnetic variation, local terrain, rota-
tion of the earth, Coriolis force, and atmospheric density. Secrets of the module also include how the
angles to impact point and how the slant range to impact point are determined for air-to-ground launch
weapons; how trajectories are determined for air-to-air launch weapons; which, if any, of these calculations
must be performed periodically instead of on demand; which weapons characteristics and which values are
used in calculation of trgjectories and how they are used; and in which reference frame the calculations are
implemented.

C:3.43 HUMAN FACTORSMODULE

The Human Factors Module is based on models of pilot reaction time and perception of simulated
continuous motion. The models determine the update frequency appropriate for symbols on a display.

C:34.4 TARGET BEHAVIOR MODULE

The Target Behavior Module contains models used to predict target behavior, such as whether it is
stationary or moving.

C:3.45 WEAPON BEHAVIOR MODULE
The Weapon Behavior Module contains models used to predict weapon behavior after release.

1-19

C:3.5 SOFTWARE UTILITY MODULE

C:3.5.1 POWER-UP INITIALIZATION MODULE

The Power-Up Initiadization Module signals when the following modules have completed their
power-up initialization procedures. Function Driver, Shared Services, Device Interface, Physical Models,
Data Banker, Numerical Algorithms.

C:3.5.2 NUMERICAL ALGORITHMSMODULE

This module provides mathematical service routines needed by more than one module within the sys-
tem. These functions include services for data manipulations such as exponentiation, square root and loga-
rithm. The module also provides commonly used STE [AT] specific types. The primary secrets of this
modul e are the algorithms implementing the functions.

C:3.6 SYSTEM GENERATION MODULE DECOMPOSITION

C:3.6.1 SYSTEM GENERATION PARAMETER MODULE

The System Generation Parameter Module provides values for al the system generation parameters
defined in other modules, including those specified in module interfaces and those defined in the module
implementations. There is a submodule of the System Generation Parameter Module for each module in
the rest of the system; each of these submodules is in turn composed of an external parameter submodule
and an internal parameter submodule. External parameters of a module are available to other modules;
internal parameters are secrets of the module. The primary secrets of this module are the values of the
parameters for a particular version of the system.

C:3.6.2 SUPPORT SOFTWARE MODULE

The support software in this system is a combination of commercially available tools such as operat-
ing systems, compilers, editors, and revision control aids, plus a small set of tools built especially for this
project. A report describing the tools will be made available upon termination of the project.

Acknowledgements

P. C. Clements' efforts have led to substantial improvements in the structure described in this docu-
ment and to substantial clarifications in the writing. Comments on earlier drafts by B. Amlicke, S.
Bouchard, L. Chmura, H. Elovitz, C. Heitmeyer, R. Krutar, D. Weiss, and J. Shore were very helpful.
Thanks to Cheryl Hinson for converting the format and layout of the document text to its current form.

1-20

(1]
(2]
(3]
[4]
(5]
6]

8]
(9]
[10]

[11]
[12]

[13]
[14]

[15]
[16]

IV. REFERENCES

Heninger, K., Kalander, J., Parnas, D., and Shore, J.; Software Requirements for the A-7E Aircraft;
NRL Memorandum Report 3876; 27 November 1978.

Parnas, D.; ‘*On the Criteria To Be Used in Decomposing Systems into Modules'’; Comm. ACM,
Vol. 15, No. 12 (December 1972), pp. 1053-1058.

Parker, A., Heninger, K., Parnas, D., and Shore, J.; Abstract Interface Soecifications for the A-7E
Device Interface Module; NRL Memorandum Report 4385, 20 November 1980.

Heninger, K., Clements, P., Parnas, D., and Weiss, D.; Interface Specifications for the A-7E (SCR)
Extended Computer Module; NRL Memorandum Report 5502, 31 December 1984.

Clements, P.; Interface Secifications for the A-7E Shared Services Module; NRL Memorandum
Report 4863, 8 September 1982.

Clements, P., and Faulk, S.; Interface Specifications for the SCR (A-7E) Data Banker Module; NRL
Technical Memorandum 7595-020, 30 June 1986.

Parnas, D.; ‘*Designing Software For Extension and Contraction’’, Proceedings of the 3rd Interna-
tional Conference on Software Engineering (10-12 May 1978), pp. 264-277.

Parnas, D., and Wuerges, H.; ‘‘Response to Undesired Events in Software Systems'’; Proc. Second
Int. Conf. Software Eng., pp. 437-446; 1976.

Clements, P.; Function Specifications for the A-7E Function Driver Module; NRL Memorandum
Report 4658, October 1981.

Clements, P., Faulk, S., and Parnas, D.; Interface Specification for the A-7E Applications Data Type
Module; NRL Memorandum Report 8734, 23 August 1983.

Clements, P.; NRL Report 8734, 23 August 1983.

Labaw, B.; Abstract Interface Specifications for the A-7E Physical Models Module; NRL Technical
Memorandum 7595-021, 4 September 1986.

Labaw, B.; Interface Specifications for the A-7E Filter Behavior Module; NRL Technical Memoran-
dum 7595-022, 20 August 1986.

Clements, P., Labaw, B., and Wicinski, T.; Interface Specifications for the A-7E Software Utilities
Module; NRL Technical Memorandum 7595-023, 23 June 1986.

Parnas, D.; Software Engineering Principles, University of Victoria, 1982.

Parnas, D., Clements, P.; "A Rational Design Process: How and Why to Fake It"; |EEE Transactions
on Software Engineering; Vol. SE-12, No. 12, (February 1986), pp. 251-257.

1-21

abstract interface

abstraction

access function
access program

consumer
event

event mechanism

hidden submodule

inter face

internal program

module

module facility

module hierarchy

module implementation

V. GLOSSARY

an abstraction that represents more than one interface (see
interface, module interface); it consists of the assumptions
that are included in all of the interfaces that it represents.

a description of a set of objects that applies equally well to
any one of them. Each object is an instance of the abstraction.

See acCess program.

a program that may be called by programs outside of the
module to which it belongs. Most run-time communication
between modules is effected by invocation of access pro-
grams. There are severa different sorts of access functions:
some return information to the caller, some change the state of
the module to which they belong, and some do both.

aprogram that requires data produced by another program.

(1) change in a condition; (2) signal from a module to its user
programs indicating the occurrence of some change within the
module. Events resemble hardware interrupts because they
occur at unpredictable times and are not synchronized with the
control flow of user programs. In the A-7E program, events
will be signalled to user programs using an event mechanism
(see below).

a programming construct that allows processes to communi-
cate about the occurrence of events. Typical operations pro-
vided include an operation to wait for a particular event to
occur and an operation to signal that a particular event has
occurred.

a submodule whose existence is part of the secret of the parent
module.

(1) between two programs. the assumptions that each pro-
grammer needs to make about the other program in order to
demonstrate the correctness of his own program.

(2) between a program and a device: assumptions about the
device that must be accounted for in the program in order for
the program to work as expected.

a program that is not accessible to programs outside the
module; the existence of the interna program is part of the
secret of the module.

a programming work assignment consisting of one or more
programs. A module may be divided into smaller modules
(submodules).

the access programs and events provided by a module in order
to alow user programs to be independent of the module
secret. A complete description of a facility is a specification
of the module.

a hierarchy defined by the relation ‘‘contains’ on pairs of
modules.

the algorithms, data structures, and programs that satisfy the
modul e specification.

1-22

moduleinterface

module secr et
module specification
modul€ s structure

primary secret

process

process definition
producer

program

required function

secondary secr et

secr et

submodule
subprogram

Sysgen parameters

the set of assumptions that the authors of external programs
may make about the module. It includes restrictions on the
way that the module may be used. In the A-7E software,
modules communicate either by one module using access pro-
grams from the other module, or by one module being notified
of an event that was signalled by the other module. The inter-
face consists of assumptions about the availability of the
access programs, the syntax of the calls on the access pro-
grams, the behavior of the access programs, and the meaning
of events. Seealso interface.

see secret, module implementation.
adescription of amodule interface; see also modulefacility.

the way that a software module is divided into submodules
and programs.

the characteristics other than decisions by the module designer
that amodule isintended to hide. See also secondary secret.

a subset of the run-time events of the system used as adminis-
trative units in the run-time allocation of processors. See also
process definition.

the program that controls the sequence of actions by a process.

amodule that provides data for use by other programs. A pro-
gram that returns to its caller an output parameter that is a
function of the input that the caller provided is not considered
a data producer. Examples of data producers include pro-
grams that read values measured by sensors, or calculate phy-
sical characteristics based on mathematical models.

a named, machine executable, description of an algorithm.
The name may be used to invoke the program’s execution. A
program may include a description (declaration) of the data
structures that it uses; it may invoke other programs and refer
to data structures that have been described in other programs.
See also subprogram, process definition.

used in the sense of [1]. Each requirements function is the
determination of the value of a specific, closely related set of
output values. The system performs al of its requirements
functions when it properly determines the value of al of its
outputs.

software design decisions made to implement the abstraction
that hides the primary secret.

the facts about the module that are not included in its inter-
face; i.e., assumptions that user programs are not alowed to
make about the module. The correctness of programs in other
modules must not depend on those facts. The secrets tell how
the module's specification has been satisfied. See also
module specification, primary secret, secondary secret.

any module that is a component of a higher level module.

a subprogram is a program that can be invoked by another
program. A subprogram may be either a subroutine or a
macro.

a symbol used as a placeholder for values that will be supplied
just before a system is generated.

1-23

undesired event (UE)

undesired event assumption

use, uses

user programs

virtual computer

virtual machine
visible submodules

a run-time event that the designers hope will not occur. Pro-
duction versions of the A-7E program are written on the
assumption that they do not occur.

assumptions about what constitutes improper use of a module
by user programs, e.g., calling an access program with param-
eters of the wrong type.

Program A uses program B if there must be a correct version
of B present for A to run correctly. A program uses a module

if it uses at least one program from that module. A module
uses another module if at least one program uses that module.

all programs that use programs from a module but are not part
of that module. The term ‘‘user’’ is relative to the module
being discussed.

a computer-like set of instructions implemented, at least in
part, by software.

seevirtual computer.
submodules whose existence is visible to user programs.

1-24

TABLE OF CONTENTS

I ot | {010 o TSR
The A-7TE SOFtWEIE SLTUCLUIESooieveeieeieeeeteeeseeeeeseteee s st e s eeaaeesesaeessbessssssessasseessssessassesssanseessnrees
G0oals Of the A-TE MOUUIE SITUCKLUINEevieieie ettt ettt s st e s st e s sae e s sbe e s snre s s enes

D= Lo I = Vo o] = OSSN

Module Descriptionceevereennnne.
Module Initializationcccceevveennnne.

Treatment of Undesired Events..............

1l A-7E Module Structurecccoceverveneee
A: Top-Level Decomposition
A:1 Hardware-Hiding Module

A:2 Behavior-Hiding Module

A:3 Software Decision Module

B: Second-Level Decomposition

B:1 Hardware-Hiding Module DeCOMPOSITIONcoceiieiriereninere et

B:1.1 Extended COMPULEr MOTUIEccceiueieecieeeeeeeees e e

B:1.2 Device Interface Module

B:2 Behavior-Hiding Module DecomMPOSItIONccccieeerierieninene e

B:2.1 Function Driver Module

B:2.2 Shared Services Module

1-1

1-1

1-1

1-1

1-2

1-2

1-3

1-3

1-3

1-5

1-5

1-5

1-7

1-7

1-8

B:3 Software Decision Module DeCOMPOSITIONccccveeerereririre e

B:3.1 Application Data TYPE MOAUIEcveveeeeieieeceeere e

B:3.2 DataBanker Module...............
B:3.3 Filter Behavior Module
B:3.4 Physical Models Module
B:3.5 Software Utility Module
B:3.6 System Generation Module ...
C: Third-Level Decomposition

C:1 Hardware-Hiding Module

C:1.1 Extended Computer Module DeCOMPOSILIONcccccveereeeeeienieseseseeseee e

C:1.1.1 DataModule

C:1.1.2 Input/Output Module

C:1.1.3 Computer State Module

C:1.1.4 Pardlelism Control MOAUIEoviieeee et see e

C:1.1.5 Program Module

C:1.1.6 Virtual Memory Module (Hidden)cccooveirinenenienesese e

C:1.1.7 Interrupt Handler Module (Hidden) ..o

C:1.1.8 Timer Module

C:1.2 Device Interface Module DECOMPOSITIONccveeeeeeeereeeere e e

C:1.2.1 Air Data Computer

C:1.2.2 Angle of Attack Sensor

C:1.2.3 Audible Signal Device ..
C:1.2.4 Computer Fail Device ...

C:1.2.5 Doppler Radar Set

C:1.2.6 Flight Information DiSPlaysSc.cccereerireriririeerieresierese e

C:1.2.7 Forward Looking Radar

1-ii

1-8

1-8

1-9

1-9

1-9

1-10

1-10

1-10

1-10

1-10

1-10

1-10

1-11

1-11

1-11

1-11

1-12

1-12

1-12

1-12

1-12

1-12

1-12

1-12

C:1.2.8 Head-Up Display

C:1.2.9 Inertial Measurement Set .

C:1.2.10 Input-Output Representation (HIidden)cooevevevenene e

C:1.2.11 Master Function Switch (Hidden)ccccooiiiinnininee e

C:1.2.12 Panelcooveeveeeeeeenen,

C:1.2.13 Projected Map Display Sebccoeoviiriisieeeeeeseee s

C:1.2.14 Radar Altimeter

C:1.2.15 Shipboard Inertial Navigation SyStemcccveeverrienniensenee e

C:1.2.16 Slew Control

C:1.2.17 Switch Bankccccc.....

C:1.218 TACAN ...

C:1.2.19 Visud Indicators............

C:1.2.20 Waypoint INformation SYStEMccccceveieeierieniesese e

C:1.2.21 Weapon Characteristics .

C:1.2.22 Weapon Release System

C:1.2.23 Weight on Gear

C:2 Behavior-Hiding Module.

C:2.1 Function Driver Module DECOMPOSITIONcveeeeeirirenierierie s

C211

C:21.2

C:213

C21l4

C:215

C:21.6

C.217

C:218

Air Data Computer
Audible Signd
Computer Fail Signd

Doppler Radar

Flight Information DiSPlaycccceeeerrenneneeeneee e

Forward Looking Radar
Head-Up Display

Inertial Measurement Set

1-iii

1-12

1-13

1-13

1-13

1-13

1-13

1-13

1-13

1-14

1-14

1-14

1-14

1-14

1-14

1-14

1-14

1-15

1-15

1-15

1-15

1-15

1-15

1-15

1-15

1-15

1-15

Ci2.1.9 PANEl ..o 1-15

C:2.1.10 Projected Map Display SEbcccoveveeiereeecereee e 1-15
Ci2. 110 SINS et ettt st et bbbt bt et aeen e eae e 1-15
C:2.1.12 VisUal INAICAIOrecvereeeirieiirieirieerie et 1-16
C:2.1.13 Weapon REIEESEccccvviereirieiesiesieiee e se ettt st s ne e eneens 1-16
C:2. 114 GroUNG TESE ..veeeviieiirieiereeie ittt 1-16
C:2.2 Shared Services Module DeCOMPOSITIONccvevveeeeeieeereee e sese e eseenes 1-16
C:2.2.1 Mode Determination MOAUIEc..coeveiriririeenerese et 1-16
C:2.2.2 Panel 1/0 SUPPOIt MOTUIEcviiiiiieieieeei e 1-16
C:2.2.3 Shared SUBroutine MOdUIEoeiirrieeire e 1-17
C:2.2.4 Stage DIreCtor MOQUIE ..ot 1-17
C:2.2.5 System Vaue MOUIEoouiiiiiiee e 1-17
C:3 Software DeCiSioN MOUUIEc.cvieriieiiirerieeenes e 1-18
C:3.1 Application Data Type Module Decompositionceceeeevvrenennserseneeneeneeeenes 1-18
C:3.2.1 Numeric Data TYype MOAUIEccocoveiiiiieieeeee e 1-18
C:3.1.2 State Transition Event Data Type Modulecoovvevvvenievevccesieseeeeeee 1-18
C:3.2 DataBanker MOQUIEcociiiiirieeieieete et 1-19
C:3.2.1 Singular ValUES MOAUIEooueiiiiieeeeeeee e 1-19
C:3.2.2 Complex EVENt MOUUIEccuveieriereeeeiereeeetee ettt 1-19
C:3.3 Filter Behavior MOGUIEcooueiiiiiiieieeeeeeeee e 1-19
C:3.4 Physical Models Module DecOmMPOSItIONcccoeeerereeeneneniesiesee e 1-19
C:3.4.1 Aircraft Motion MOAUIEcocerieiiiieeee et 1-19
C:3.4.2 Earth CharaCteristicCS MOAUIEcccoueiiriiirieieeeeee e 1-19
C:3.4.3 Human FactorsS MOGUIE ..o 1-19
C:3.4.4 Target Behavior MOAUIEccovveerieiireeierieerie et 1-19
C:3.4.5 Weapon Behavior MOAUIE ... 1-19

1-iv

C:3.5 Software ULility MOAUIEooiiiiiiie e e

C:3.5.1 Power-Up Initiaization MOAUIEcccoueieeieiriee e

C:3.5.2 Numerical AlgorithmsModule ..o

C:3.6 System Generation Module DeCOMPOSITIONccoeuerirereriereniene e

C:3.6.1 System Generation Parameter Moduleccvceeevcevenenese e

C:3.6.2 Support SOftware MOdUIEcccoueiiiirieeeee s

Y = c LT [0

1-v

1-20

1-20

1-20

1-20

1-20

1-20

1-21

1-22

Use the footer of this page

1-1

1-1

